

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	passpy 1.0rc2 documentation

passpy

passpy has been written to be a platform independent library and cli
that is compatible with ZX2C4’s pass [http://www.passwordstore.org].

passpy saves your passwords in gpg encrypted files and optionally uses
git as a revision tool. All files are stored inside
~/.password-store (or any other location) and can be organised into
folders. You can also just copy the whole store to have your
passwords available where ever you like.

Installation

PyPI

Just do
$ [sudo] pip install passpy

Arch Linux

The package python-passpy is available in the AUR for you to install
however you like.

Manually

Either clone the git repository using
$ git clone https://github.com/bfrascher/passpy.git

or download the source from the releases tab and extract it.
Afterwards change into the new folder and do
$ [sudo] python setup.py install

Dependencies

passpy depends on Python 3.3 or later (it has mostly been tested using
Python 3.5). The program makes use of git [https://www.git-scm.com] and gpg2 [https://gnupg.org] as well as
either xclip or xsel on Linux.

The following Python packages will be installed alongside passpy:

	gitpython [https://github.com/gitpython-developers/GitPython]

	python-gnupg [https://bitbucket.org/vinay.sajip/python-gnupg]

	click [http://click.pocoo.org/]

	pyperclip [https://github.com/asweigart/pyperclip]

If you are on Windows and want colourised output on the command line,
you will additionally need to install colorama [https://github.com/tartley/colorama].

Contents

	Usage
	CLI

	Library

	Data Organisation

	Differences to ZX2C4’s pass

	API Reference
	git module

	gpg module

	store module

	util module

Indices and tables

	Index

	Search Page

 Copyright 2016, Benedikt Rascher-Friesenhausen.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	passpy 1.0rc2 documentation

Usage

CLI

Setting up the password store

To initialise a new password store use:

$ passpy init "passpy gpg id"
Password store initialised for passpy gpg id.

where passpy gpg id is the ID of the GPG key to encrypt the
password files with. You can use different IDs for different folders
inside the store by adding the -path or -p option. It is also
possible to use multiple IDs instead of just one.

If you want to use git to revision your passwords you can initialise
it with:

$ passpy git init

By calling passpy git [...] you can directly interact with git
acting on the password store to e.g. add remotes to push/pull to/from
them.

Using the password store

You can use the --help option on any command to get all the
available options.

To list all existing passwords in the password store use:

$ passpy ls
Password Store
|-- Email
| |-- google.com
| `-- yahoo.com
|-- Programming
| |-- github.com
| `-- Python
| |-- python.org
| `-- readthedocs.org
`-- Notes
 `-- Wi-Fi
 |-- home
 `-- work

We can show a password:

$ passpy show Email/google.com
z.Rw6$`U=2MZs(i9\>-r

or copy it to the clipboard:

$ passpy show -c Email/google.com
Copied Email/google.com to the clipboard.

When accessing a password you will be prompted to enter your password
for the encryption key. If you have a running gpg-agent you can
configure it, so that you stay authenticated for several minutes.
This helps especially when accessing multiple passwords in short
order, e.g. when moving passwords and reencrypting them.

To add an existing password to the store use:

$ passpy insert Webshop/amazon.com
Enter password for Webshop/amazon.com:
Repeat for confirmation:

Using the --echo or -e option you won’t be prompted to repeat
the password. With --multiline or -m you can enter multiple
lines, or you can use $ passpy edit pass-name to edit password
files with your default text editor.

To let passpy generate a password for you, use:

$ passpy generate Social/facebook.com 16
The generated password for Social/facebook.com is:
&,"S_Bq}qWKW&<^f

If you don’t want any symbols in your password use the
--no-symbols or -n option. Like show you can copy the
generated password to the clipboard with --clip or -c and
--in-place or -i will overwrite the first line of an existing
password file with the new password.

To copy or move a password file or folder in the password store use:

$ passpy cp/mv Webshop Webshops
/home/user/.password-store/Webshop/amazon.com.gpg -> /home/user/.password-store/Webshops/amazon.com.gpg

To avoid being prompted for every file that already exists at the
destination, use the --force or -f option. When using a
trailing / in the destination name, the destination will always be
treated as a directory.

Finally, you can delete a password file

$ passpy rm Social/facebook.com
Really delete Social/facebook.com? [y/N] y
removed Social/facebook.com

Passing the --force or -f option will delete the file without
asking and --recursive or -r will delete whole directories, if
one is given.

Library

To use passpy in your Python project, we will first have to create a
new passpy.store.Store object

>>> import passpy
>>> store = passpy.Store()

If git or gpg2 are not in your PATH you will have to specify them via
git_bin and gpg_bin when creating the store object. You
can also create the store on a different folder, be passing
store_dir along.

To initialise the password store at store_dir, if it isn’t
already, use

>>> store.init_store('store gpg id')

where store gpg id is the name of a GPG ID. Optionally, git can
be initialised in very much the same way

>>> store.init_git()

You are now ready to interact with the password store. You can set
and get keys using passpy.store.Store.set_key() and
passpy.store.Store.get_key().
passpy.store.Store.gen_key() generates a new password for a new
or existing key. To delete a key or directory, use
passpy.store.Store.remove_path().

For a full overview over all available methods see
store module.

Data Organisation

You are free to organise your files in the store however you like.
But, as the --clip or -c option only copies the first line of
a password file to the clipboard and the --in-place or -i
option overwrites the first line with a new password, it is
recommended that you have your password on the first line for each
password file. That way it is easy to fetch a password for a login
form or update an existing password file.

Some users might want to store additional information for a store
entry, like a websites URL, the username and so on. There are many
methods to do this, some of which are listed under Data Organization
on the website for [ZX2C4’s pass](http://www.passwordstore.org). The
authors preferred way to do this (both for pass and passpy) is to have
additional lines under the first one with a leading keyword. An entry
might look like this:

z.Rw6$`U=2MZs(i9\>-r
URL: accounts.google.com/*
Username: somegoogleuser@gmail.com

Chrome Sync Password: EK6zzRo4chejRBztuVUF3CvqvRg9E4

Of course, as said in the beginning of the section, how you organise
your data is completely up to you and this is just one way of doing
things.

 Copyright 2016, Benedikt Rascher-Friesenhausen.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	passpy 1.0rc2 documentation

Differences to ZX2C4’s pass

While passpy is fully compatible with [ZX2C4’s
pass](http://www.passwordstore.org), there are some differences:

	As for the moment passpy does not print as many messages to the
user, as pass does. Also some messages might be phrased
differently.

	When invoking pass without any known command, show is used.
passpy always needs to be given a command to invoke.

	passpy allows gen as a alternative to generate.

	After editing a password file with an editor pass notes the used
editor in the git commit message. passpy uses the same message for
updating a key, regardless if an editor was used or not. This is
because for both cases passpy.store.Store.set_key() is being
called which also handles the git commit.

	pass lists all files in the password store that do not start with a
.. passpy only lists files that end on .gpg. The reason
for this change is that the returned key names should be directly
accessible with passpy.store.Store.get_key(), which expects a
file ending on .gpg.

 Copyright 2016, Benedikt Rascher-Friesenhausen.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	passpy 1.0rc2 documentation

API Reference

git module

This module includes all calls to the git wrapper [https://github.com/gitpython-developers/GitPython/].

	
passpy.git._git_commit(repo, msg, verbose=False)

	Commit the current changes.

	Parameters:	
	repo (git.repo.base.Repo [https://gitpython.readthedocs.org/en/stable/reference.html#git.repo.base.Repo]) – The repository to use.

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The commit message.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True git’s standard output
will be printed.

	
passpy.git.get_git_repository(path)

	Get the git repository at path.

	Parameters:	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path of a git repository to return.

	Return type:	git.repo.base.Repo [https://gitpython.readthedocs.org/en/stable/reference.html#git.repo.base.Repo]

	Returns:	The git repository at path or None if no repository
exists.

	
passpy.git.git_add_path(repo, path, msg, commit=True, verbose=False)

	Add a file or directory to the git repository and commit.

	Parameters:	
	repo (git.repo.base.Repo [https://gitpython.readthedocs.org/en/stable/reference.html#git.repo.base.Repo]) – The git repository. If None the function will
silently fail.

	path (str or list) – The path of the file or directory to commit relative
to passpy.store.Store.store_dir.

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The commit message.

	commit (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True the added file will also
be commited.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True git’s standard output
will be printed.

	Raises:	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if something went wrong with adding the files.

	
passpy.git.git_config(repo, *args)

	Change the configuration of a git repository.

	Parameters:	repo (git.Repo) – The git repository to change the configuration for.

	
passpy.git.git_init(path)

	Create a new git repository.

	Parameters:	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The absolute path directory to create a git
repository in.

	Return type:	git.Repo

	Returns:	The newly initialised git repository.

	
passpy.git.git_remove_path(repo, path, msg, recursive=False, commit=True, verbose=False)

	Remove the file or directory at path from the repository and commit.

	Parameters:	
	repo (git.repo.base.Repo [https://gitpython.readthedocs.org/en/stable/reference.html#git.repo.base.Repo]) – The git repository. If None the function will
silently fail.

	path (str or list) – The file or directory to remove.

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The commit message.

	recursive (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Set to True if directories
should be removed from the repository recursively.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True git’s standard output
will be printed.

gpg module

This module includes all calls to the gnupg wrapper [https://bitbucket.org/vinay.sajip/python-gnupg].

	
passpy.gpg._get_gpg_recipients(path)

	Get the GPG recipients for the given path.

	Parameters:	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory to get the GPG recipients for.

	Raises:	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – if there is not valid .gpg-id file for
path.

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns:	The list of IDs of the GPG recipients for the given
path.

	
passpy.gpg._reencrypt_key(path, gpg, gpg_recipients)

	Reencrypt a single key.

Gets called from passpy.gpg._reencrypt_path().

	Parameters:	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a gpg encrypted file.

	gpg (gnupg.GPG [https://python-gnupg.readthedocs.org/en/latest/gnupg.html#gnupg.GPG]) – The gpg object.

	gpg_recipients (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of GPG Ids to encrypt the key
with.

	
passpy.gpg.read_key(path, gpg_bin, gpg_opts)

	Read and decrypt a single key file.

	Parameters:	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the key to decrypt.

	gpg_bin (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the gpg binary.

	gpg_opts (list [https://docs.python.org/3/library/stdtypes.html#list]) – The options for gpg.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:	The unencrypted content of the file at path.

	
passpy.gpg.reencrypt_path(path, gpg_bin, gpg_opts)

	Reencrypt a single or multiple keys.

If path is a directory all keys inside that directory and it’s
subdirectories will be reencrypted.

	Parameters:	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key or directory to reencrypt. If None
the function will silently fail.

	gpg_bin (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the gpg binary.

	gpg_opts (list [https://docs.python.org/3/library/stdtypes.html#list]) – The gpg options.

	Raises:	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – if path does not exist.

	
passpy.gpg.write_key(path, key_data, gpg_bin, gpg_opts)

	Encrypt and write a single key file.

	Parameters:	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the key to decrypt.

	gpg_bin (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the gpg binary.

	gpg_opts (list [https://docs.python.org/3/library/stdtypes.html#list]) – The options for gpg.

store module

	
class passpy.store.Store(gpg_bin='gpg2', git_bin='git', store_dir='~/.password-store', use_agent=True, interactive=False, verbose=False)

	Python implementation of ZX2C4’s password store.

	
__init__(gpg_bin='gpg2', git_bin='git', store_dir='~/.password-store', use_agent=True, interactive=False, verbose=False)

	Creates a new Store object.

	Parameters:	
	gpg_bin (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) The path to the gpg
binary.

	git_bin (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) The path to the git binary.
CURRENTLY DOES NOTHING You will need to set the
environmental variable GIT_PYTHON_GIT_EXECUTABLE to your
path to git binary if your git binary not in your PATH
already.

	store_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) The path to the password
store.

	use_agent (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Set to True if you are
using a gpg agent.

	interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True the user will
be prompted before overwriting/deleting files.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True additional
information will be printed to the standard out.

	
__weakref__

	list of weak references to the object (if defined)

	
_copy_move_path(old_path, new_path, force=False, move=False)

	Copies or moves a key or directory within the password store.

	Parameters:	
	old_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The current path of the key or directory.

	new_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new path of the key or directory. If
new_path ends in a trailing ‘/’ it will always be
treated as a directory.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If True any existing key or directory at
new_path will be overwritten.

	move (bool [https://docs.python.org/3/library/functions.html#bool]) – If True the key or directory will be
moved. If False the key or directory will be copied
instead.

	
_get_store_name(path)

	Returns the path relative to the store.

	Parameters:	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The absolute path to an entry in the store.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:	path relative to
passpy.store.Store.store_dir without a leading ‘/’
and trailing ‘.gpg’ if any.

	
copy_path(old_path, new_path, force=False)

	Copies a key or directory within the password store.

	Parameters:	
	old_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The current path of the key or directory.

	new_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new path of the key or directory. If
new_path ends in a trailing ‘/’ it will always be
treated as a directory.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If True any existing key or directory at
new_path will be overwritten.

	
find(names)

	Find keys by name.

Finds any keys in the password store that contain any one
entry in names.

	Parameters:	names (str or list) – The name or names to find keys for.

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns:	A list of keys whose name contain any one entry in
names.

	
gen_key(path, length, symbols=True, force=False, inplace=False)

	Generate a new password for a key.

	Parameters:	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path of the key.

	length (int [https://docs.python.org/3/library/functions.html#int]) – The length of the new password.

	symbols (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True non alphanumeric
characters will also be used in the new password.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True an existing key at
path will be overwritten.

	inplace (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True only the first
line of an existing key at path will be overwritten with
the new password.

	
get_key(path)

	Reads the data of the key at path.

	Parameters:	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the key (without ‘.gpg’ ending)
relative to passpy.store.Store.store_dir.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:	The key data as a string or None, if the key
does not exist.

	Raises:	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – if path is not a file.

	
init_git()

	Initialise git for the password store.

Silently fails if passpy.store.Store.repo is not
None.

	
init_store(gpg_ids, path=None)

	Initialise the password store or a subdirectory with the gpg ids.

	Parameters:	
	gpg_ids (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of gpg ids to encrypt the
password store with. If the list is empty, the current
gpg id will be removed from the directory in path or root,
if path is None.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) If given, the gpg ids will only be
set for the given directory. The path is relative to
passpy.store.Store.store_dir.

	Raises:	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the there is a problem with path.

	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – if
passpy.store.Store.store_dir already exists and is
a file.

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – if the current gpg id should be
deleted, but none exists.

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if the directories in path do not exist and
can’t be created.

	
list_dir(path)

	Returns all directory and key entries for the given path.

	Parameters:	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory to list relative to
passpy.store.Store.store_dir

	Return type:	(list, list)

	Returns:	Two lists, the first for directories, the second for
keys. None if path is not a directory.

	Raises:	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – if path is not a directory in the
password store.

	
move_path(old_path, new_path, force=False)

	Moves a key or directory within the password store.

	Parameters:	
	old_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The current path of the key or directory.

	new_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new path of the key or directory. If
new_path ends in a trailing ‘/’ it will always be
treated as a directory.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If True any existing key or directory at
new_path will be overwritten.

	
remove_path(path, recursive=False, force=False)

	Removes the given key or directory from the store.

	Parameters:	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key or directory to remove. Use ‘’ to
delete the whole store.

	recursive (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Set to True if nonempty
directories should be removed.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True the user will never
be prompted for deleting a file or directory, even if
passpy.store.Store.interactive is set.

	
search(term)

	Search through all keys.

	Parameters:	term (str [https://docs.python.org/3/library/stdtypes.html#str]) – The term to search for. The term will be
compiled as a regular expression.

	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:	The dictionary has an entry for each key, that
matched the given term. The entry for that key then
contains a list of tuples with the line the term was found
on and the match object.

	
set_key(path, key_data, force=False)

	Add a key to the store or update an existing one.

	Parameters:	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to write.

	key_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data of the key.

	foce (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True path will be
overwritten if it exists.

	Raises:	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – if a key already exists for path and
overwrite is False.

util module

	
passpy.util.copy_move(src, dst, force=False, move=False, interactive=False, verbose=False)

	Copies/moves a file or directory recursively.

This function is partially based on the cp function from the
pycoreutils [https://pypi.python.org/pypi/pycoreutils/] package written by Hans van Leeuwen and licensed
under the MIT license.

	Parameters:	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file or directory to be copied.

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file or directory to be copied to.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If True existing files at the destination
will be silently overwritten.

	interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – If True the user will be prompted for
every file to be overwritten. Has no effect if force is
also True.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True print the old and new filename
for every copied/moved file.

	Raises:	
	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – if there exists no key or directory for
src.

	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – if a key at dst already exists and
force is set to False.

	
passpy.util.gen_password(length, symbols=True)

	Generates a random string.

Uses random.SystemRandom [https://docs.python.org/3/library/random.html#random.SystemRandom] if available and
random.Random otherwise.

	Parameters:	
	length (int [https://docs.python.org/3/library/functions.html#int]) – The length of the random string.

	symbols (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If True
string.punctuation will also be used to generate the
output.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:	A random string of length length.

	
passpy.util.initialised(func)

	Check that the store is initialised before running.

Used as a decorator in methods for passpy.store.Store.

	Parameters:	func – A method of passpy.store.Store.

	Return type:	function

	Returns:	The method if the store is initialised.

	Raises:	passpy.exceptions.StoreNotInitialisedError – if the store
is not initialised.

	
passpy.util.trap(path_index)

	Prevent accessing files and directories outside the password store.

path_index is necessary as the functions that need to be trapped
have different argument lists. This way we can indicate which
argument contains the paths that are to be checked.

	Parameters:	path_index (int or str) – The index for the path variable in either
args or kwargs.

	Return type:	func

	Returns:	The trapped function.

 Copyright 2016, Benedikt Rascher-Friesenhausen.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	passpy 1.0rc2 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 passpy	

 	
 	
 passpy.git	

 	
 	
 passpy.gpg	

 	
 	
 passpy.store	

 	
 	
 passpy.util	

 Copyright 2016, Benedikt Rascher-Friesenhausen.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	passpy 1.0rc2 documentation

Index

 _
 | C
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | W

_

 	

 	__init__() (passpy.store.Store method)

 	__weakref__ (passpy.store.Store attribute)

 	_copy_move_path() (passpy.store.Store method)

 	_get_gpg_recipients() (in module passpy.gpg)

 	

 	_get_store_name() (passpy.store.Store method)

 	_git_commit() (in module passpy.git)

 	_reencrypt_key() (in module passpy.gpg)

C

 	

 	copy_move() (in module passpy.util)

 	

 	copy_path() (passpy.store.Store method)

F

 	

 	find() (passpy.store.Store method)

G

 	

 	gen_key() (passpy.store.Store method)

 	gen_password() (in module passpy.util)

 	get_git_repository() (in module passpy.git)

 	get_key() (passpy.store.Store method)

 	

 	git_add_path() (in module passpy.git)

 	git_config() (in module passpy.git)

 	git_init() (in module passpy.git)

 	git_remove_path() (in module passpy.git)

I

 	

 	init_git() (passpy.store.Store method)

 	init_store() (passpy.store.Store method)

 	

 	initialised() (in module passpy.util)

L

 	

 	list_dir() (passpy.store.Store method)

M

 	

 	move_path() (passpy.store.Store method)

P

 	

 	passpy.git (module)

 	passpy.gpg (module)

 	

 	passpy.store (module)

 	passpy.util (module)

R

 	

 	read_key() (in module passpy.gpg)

 	reencrypt_path() (in module passpy.gpg)

 	

 	remove_path() (passpy.store.Store method)

S

 	

 	search() (passpy.store.Store method)

 	set_key() (passpy.store.Store method)

 	

 	Store (class in passpy.store)

T

 	

 	trap() (in module passpy.util)

W

 	

 	write_key() (in module passpy.gpg)

 Copyright 2016, Benedikt Rascher-Friesenhausen.
 Created using Sphinx 1.3.4.

 _static/up.png

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		passpy 1.0rc2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Benedikt Rascher-Friesenhausen.
 Created using Sphinx 1.3.4.

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		passpy 1.0rc2 documentation »

 All modules for which code is available

		passpy.git

		passpy.gpg

		passpy.store

		passpy.util

 © Copyright 2016, Benedikt Rascher-Friesenhausen.
 Created using Sphinx 1.3.4.

_static/comment-close.png

